T-cadherin attenuates insulin-dependent signalling, eNOS activation, and angiogenesis in vascular endothelial cells.
نویسندگان
چکیده
AIMS T-cadherin (T-cad) is a glycosylphosphatidylinositol-anchored cadherin family member. Experimental, clinical, and genomic studies suggest a role for T-cad in vascular disorders such as atherosclerosis and hypertension, which are associated with endothelial dysfunction and insulin resistance (InsRes). In endothelial cells (EC), T-cad and insulin activate similar signalling pathways [e.g. PI3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR)] and processes (e.g. angiogenesis). We hypothesize that T-cad is a regulatory component of insulin signalling in EC and therefore a determinant of the development of endothelial InsRes. METHODS AND RESULTS We investigated T-cad-dependent effects on insulin sensitivity using human EC stably transduced with respect to T-cad overexpression or T-cad silencing. Responsiveness to insulin was examined at the level of effectors of the insulin signalling cascade, EC nitric oxide synthase (eNOS) activation, and angiogenic behaviour. Overexpression and ligation of T-cad on EC attenuates insulin-dependent activation of the PI3K/Akt/mTOR signalling axis, eNOS, EC migration, and angiogenesis. Conversely, T-cad silencing enhances these actions of insulin. Attenuation of EC responsiveness to insulin results from T-cad-mediated chronic activation of the Akt/mTOR-dependent negative feedback loop of the insulin cascade and enhanced degradation of the insulin receptor (IR) substrate. Co-immunoprecipitation experiments revealed an association between T-cad and IR. Filipin abrogated inhibitory effects of T-cad on insulin signalling, demonstrating localization of T-cad-insulin cross-talk to lipid raft plasma membrane domains. Hyperinsulinaemia up-regulates T-cad mRNA and protein levels in EC. CONCLUSION T-cad expression modulates signalling and functional responses of EC to insulin. We have identified a novel signalling mechanism regulating insulin function in the endothelium and attribute a role for T-cad up-regulation in the pathogenesis of endothelial InsRes.
منابع مشابه
Fatty acid-binding protein 4 impairs the insulin-dependent nitric oxide pathway in vascular endothelial cells
BACKGROUND Recent studies have shown that fatty acid-binding protein 4 (FABP4) plasma levels are associated with impaired endothelial function in type 2 diabetes (T2D). In this work, we analysed the effect of FABP4 on the insulin-mediated nitric oxide (NO) production by endothelial cells in vitro. METHODS In human umbilical vascular endothelial cells (HUVECs), we measured the effects of FABP4...
متن کاملThe Akt kinase signals directly to endothelial nitric oxide synthase
Endothelial nitric oxide synthase (eNOS) is an important modulator of angiogenesis and vascular tone [1]. It is stimulated by treatment of endothelial cells in a phosphatidylinositol 3-kinase (PI 3-kinase)-dependent fashion by insulin-like growth factor-1 (IGF-1) and vascular endothelial growth factor (VEGF) [2] [3] and is activated by phosphorylation at Ser1177 in the sequence RIRTQS(1177)F (i...
متن کاملAMP-activated protein kinase promotes the differentiation of endothelial progenitor cells.
OBJECTIVE Endothelial progenitor cells (EPCs) can differentiate into endothelial cells (ECs) and participate in postnatal vasculogenesis, but the mechanism of EPC differentiation remains largely unknown. We investigated the role of AMP-activated protein kinase (AMPK) in EPC differentiation and functions. METHODS AND RESULTS Vascular endothelial growth factor caused the phosphorylation of AMPK...
متن کاملReceptor activator of nuclear factor (NF)-κB ligand (RANKL) increases vascular permeability; Impaired permeability and angiogenesis in eNOS-deficient mice Short Title: NO-dependent endothelial activation by RANKL
RANKL is emerging as an important regulator of vascular pathophysiology. We here demonstrate a novel role of RANKL as a vascular permeability factor, and a critical role of endothelial nitric oxide synthase (eNOS), in RANKL-induced endothelial function. RANKL increased the vascular permeability and leukocyte infiltration in vivo and caused the breakdown of the blood-retinal barrier in wild type...
متن کاملNADPH oxidase 4 promotes endothelial angiogenesis through endothelial nitric oxide synthase activation.
UNLABELLED BACKGROUND- Reactive oxygen species serve signaling functions in the vasculature, and hypoxia has been associated with increased reactive oxygen species production. NADPH oxidase 4 (Nox4) is a reactive oxygen species-producing enzyme that is highly expressed in the endothelium, yet its specific role is unknown. We sought to determine the role of Nox4 in the endothelial response to hy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cardiovascular research
دوره 93 3 شماره
صفحات -
تاریخ انتشار 2012